

The Optimum Reusable, Rapid Response, Affordable, and Effective U.S. Military Space Launch Capability

> Dirk Jameson, Lt.Gen. USAF (Ret) March 2006

What is *StarBooster*[™] ?

- Reusable First Stage Return to launch site after low-Mach number (M ~ 3) staging
 - Evolutionary approach to reusability Learn by experience
 - Current jet-fighter technologies operationally effective not technology driven (the downfall of many other systems)

StarHawk Operational System

StarHawk on alert status

StarBooster separation - Mach 3

AFRL upper stage separation

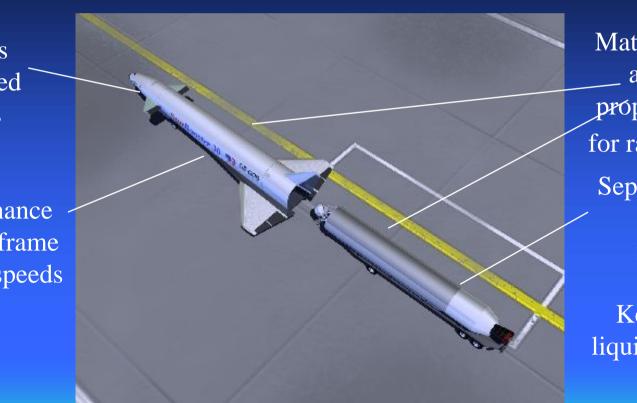
StarBooster return

StarBooster servicing

AFRL upper stage recovery option

StarHawk Squadron at CONUS Base

Part II

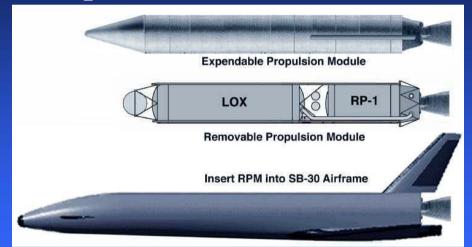

One pad for routine operations, provides war fighter with surge capability Two *StarHawks* on pad alert Strike anywhere within one hour Recover and Recycle in 12 hours

StarBoosterTM **Elements**

 Operable - Separable airframe and *Reusable Propulsion* Module[™] - a key to easy access, fast maintenance, quick turnaround, rapid response

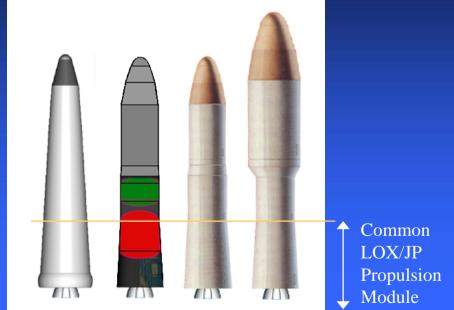
Panel access to modularized subsystems

Low-maintenance aluminum airframe Low landing speeds


Mate any available airframe and propulsion module for rapid turnaround Separate propulsion inspection, maintenance

Kerosene fuel & liquid oxygen loaded on the pad

StarHawk Modular Approach


• Modular

 Utilize <u>common elements</u> to minimize development, production and operations costs and allow flexibility in missions & operations

Common design & production

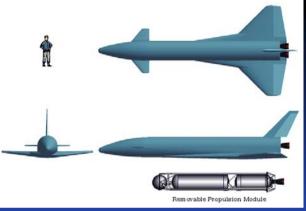
- **RPM** for booster
- *EPM* for core stage; drop tanks

Upper stage modularity Reusable & Expendable Mission Options (Reusable AFRL-VS based design) ₆

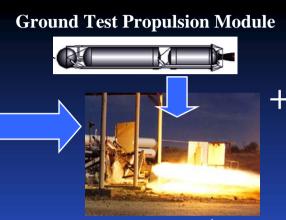
Application to Growth Systems

- Concept scalable to meet multiple mission requirements
- Common booster & core stage designs

Early Testing to Date



Langley Research Center Langley Glideback Booster (LGBB) Wind Tunnel Tests


• Supersonic tests up to Mach 4.6

- Determine control effectiveness
- Support aero database development
- Support glideback analysis & stability/control design
- Support staging model

Demonstrator Development Program

Selected smaller scale engineering & risk mitigation activities – Facility Verification Vehicle Projects

Subsonic Landing Test Vehicle

3 Supersonic StarBooster 5 Test Vehicles with RPMs Flight Test Program to

Flight Test Program t Mach 3+

Integrated *StarHawk* Configuration Tests -Includes subsonic staging dynamics tests and dual *StarBooster* glide backs & landing

Comparisons

- *StarBooster* not technology driven (e.g. unrealized expectations of high tech *Space Shuttle* and *X-33*, *NASP* projects)
- Expendable systems more costly as flight rates increase (and costly still at low flight rates e.g. *Titan IV* and *EELV*)
- *StarBooster* stages at low-Mach numbers: Hypersonic airbreathers with hypersonic staging raise costly development & technology issues and complicates operations
- *StarHawk* system based on *StarBooster* modular approach provides optimum mix of reusability and expendability to minimize development and required technologies while minimizing recurring costs of operations
- *StarHawk* system modularity also provides tailoring of elements used for specific mission needs not an option in many other approaches